Air Pollution
Effects on Children’s Health

Olga Boyko
NJDEP Division of Air Quality

MARAMA Health Effects of Air Pollution Workshop
Hunt Valley, Maryland
November 6, 2008

with thanks to: Gary Ginsberg, Ph.D.
Connecticut Dept. of Public Health
Topics To Cover

• Child-Adult Differences
 – Exposure Rates
 – Damage to Developing Organs
 – Immature Defense Mechanisms

• Sensitive Life Stages
 – In utero
 – Post-natal
 – Puberty

• Carcinogens in Early Life

• Implications for Risk Assessment and Standard-Setting
Child-Adult Differences

Children’s Predictable Exposures

- More food, more water/body weight
- Inhale more air per body weight and per lung surface area
- Toxicokinetic factors

Less Predictable Exposures

- Soil ingestion rate
- Swimming/bathtub water ingestion rate
- Unusual behaviors
 - Pica, glue sniffing, accidental poisoning
What is Toxicokinetics?

Toxicokinetics is essentially the study of "how a substance gets into the body and what happens to it in the body."

Four processes are involved in toxicokinetics.
• Absorption
• Distribution
• Biotransformation
• Excretion
Child-Adult Differences

- Faster Metabolism
- High Energy Demand
- High Caloric Needs
- High Ventilation Rate

Growth → Play Activities

5
Child-Adult Differences: Ventilation

<table>
<thead>
<tr>
<th>Activity Level</th>
<th>Age Range (years)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean m3/day</td>
<td>N</td>
</tr>
<tr>
<td>Long-term Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All)</td>
<td>birth to <1 year</td>
<td>8.76</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>1 to <2 years</td>
<td>13.49</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>2 to <3 years</td>
<td>13.23</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>3 to <6 years</td>
<td>12.65</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>6 to <11 years</td>
<td>13.42</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>11 to <16 years</td>
<td>15.32</td>
<td>1337</td>
</tr>
<tr>
<td></td>
<td>16 to <21 years</td>
<td>17.22</td>
<td>1241</td>
</tr>
<tr>
<td>Short-term Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep or Nap</td>
<td>birth to <1 year</td>
<td>4.44</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>1 to <2 years</td>
<td>6.48</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>2 to <3 years</td>
<td>6.64</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>3 to <6 years</td>
<td>6.28</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>6 to <11 years</td>
<td>6.64</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>11 to <16 years</td>
<td>7.57</td>
<td>1337</td>
</tr>
<tr>
<td></td>
<td>16 to <21 years</td>
<td>7.65</td>
<td>1241</td>
</tr>
<tr>
<td>Sedentary/Passive</td>
<td>birth to <1 year</td>
<td>4.58</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>1 to <2 years</td>
<td>6.65</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>2 to <3 years</td>
<td>6.90</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>3 to <6 years</td>
<td>6.60</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>6 to <11 years</td>
<td>7.01</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>11 to <16 years</td>
<td>8.12</td>
<td>1337</td>
</tr>
<tr>
<td></td>
<td>16 to <21 years</td>
<td>8.29</td>
<td>1241</td>
</tr>
<tr>
<td>Light Intensity</td>
<td>birth to <1 year</td>
<td>11.43</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>1 to <2 years</td>
<td>16.65</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>2 to <3 years</td>
<td>16.80</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>3 to <6 years</td>
<td>16.36</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>6 to <11 years</td>
<td>16.76</td>
<td>840</td>
</tr>
<tr>
<td>Lung Region</td>
<td>3-Month Old</td>
<td>Adult</td>
<td>Child/Adult Ratio</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Extra-thoracic</td>
<td>0.32</td>
<td>0.125</td>
<td>2.56</td>
</tr>
<tr>
<td>Tracheobronchial (Upper)</td>
<td>0.22</td>
<td>0.07</td>
<td>3.1</td>
</tr>
<tr>
<td>Tracheobronchial (Lower)</td>
<td>0.0084</td>
<td>0.0096</td>
<td>0.88</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>0.00034</td>
<td>0.000026</td>
<td>13.1</td>
</tr>
</tbody>
</table>
More Child-Adult Differences

There are many physiological differences between children and adults

- Important immaturities in clearance pathways in first year of life
 - Liver metabolism
 - Renal clearance
- Internal dose of parent chemical often higher in very young children but metabolite may be lower
Why Should We Be Concerned About Greater Exposure Rate in Early Life?

• Acute effects that are not a chronic concern:
 – Irritation, neurological impacts

• Chronic effects from long or short-term exposure:
 – Chronic toxicity (non-cancer) – 30 to 70 yrs
 – Minimal chronic period of 7 yrs
 – Cancer – relevant exposure period – 70 yrs

Do we need to worry about brief exposures that are high?
Windows of Vulnerability: *In Utero*

- **Organ system development**
 - Critical windows of even a few days
 - Thalidomide – limb malformation
 - Fetal Alcohol Syndrome (FAS)

- **Brain development**
 - Irreversible neurotoxicity
 - Pesticides – affect nerve impulse transmission
 - Mercury – attacks neurons; don’t organize properly
 - Lead – prenatal period is the most sensitive
 - PCBs, perchlorate, PBDEs – affect thyroid function
Windows of Vulnerability: *In Utero*

- *In utero* Development
 - Hormone/endocrine imprinting in early life
 - DES (diethylstilbestrol): female reproductive tract abnormalities and cancer can result from in utero exposure
 - New evidence emerging
In Utero Vulnerability: Air Pollutants

• Los Angeles Studies
 – Higher CO and PM: 10-25% more pre-term births
 • 2500 births; Ritz, et al., 2007
 – Higher CO and ozone: 2-3x↑ heart defects
 • Effect most in 2nd month of pregnancy
 • 9000 babies; Ritz, et al., 2003
Post-Natal Vulnerability

- Modified organ function, maybe modified structure
- Lung – growth in surface area and branching during first 8-12 yrs
- Critical brain development
 - Lead example: impaired learning, reduced IQ
- Immune system development
 - Critical recognition of self vs. non-self
- Endocrine systems
 - Disruption of hormone levels
 - Early puberty?
Lead Inhibits the Propensity of Neural Stem Cells to Turn into Neurons

From Joel Schwartz April 2008
Figure 6-2.5 Restricted cubic splines and log-linear model for concurrent blood lead concentration. The dotted lines are the 95% confidence intervals for the restricted cubic splines.

Source: Lanphear et al. (2005).
Post-Natal Effects of Ozone on Respiratory Tract

• Monkey model – Plopper, et al. 2007
 – Newborn monkey model for asthma
 – Combined exposure to HDMA and ozone
 • Intermittent ozone exposure: 0.5 ppm, 8 hr/day
 • 5 days on, 9 days off for first 6 months of life
 • 6 months to evaluate recovery
 – Structure and function of the airways changed

HDMA = House Dust Mite Allergen
Difference in size of a bronchial of an infant monkey after various exposures

FA = Filtered Air
HDMA = House Dust
Mite Allergen
O₃ = Ozone
Carcinogen Susceptibility

• Good mechanistic grounds for heightened neonatal sensitivity to mutagens
 – Cell division rates are higher
 – Longer timeframe for tumor to be expressed

![Figure 1.B](image)

Change in Liver Weight (g) with Age
(Derived from equations in Haddad, et al., 1999)
Cancer Vulnerability in Early Life

- Animal cancer bioassays begin at 6 weeks of age
 - Miss juvenile and *in utero* periods
- Isolated studies in 1960s thru 1990s in juvenile animals showed:
 - Surprisingly high potency per exposure period
 - Haber Law not true
 - \(\text{(Dose x Time} \neq \text{constant toxicity)} \)
 - Cannot pro-rate exposure over lifetime
Chemicals Which Show Early Life Cancer Vulnerability

- Mutagens
 - Nitrosoamines
 - BaP
 - Benzidine
 - Vinyl chloride
- Non-mutagens
 - DDT, dieldrin, tamoxifen
MLEs of Cancer by Sex and Age Compared to Adult Rates at Similar Dosage

<table>
<thead>
<tr>
<th>Sex and age group</th>
<th>Maximum likelihood estimate</th>
<th>95% LCL</th>
<th>95% UCL</th>
<th>Arithmetic mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetal period</td>
<td>25</td>
<td>15.6</td>
<td>42</td>
<td>27</td>
</tr>
<tr>
<td>Birth–weaning</td>
<td>57</td>
<td>38</td>
<td>90</td>
<td>59</td>
</tr>
<tr>
<td>Weaning–60-days</td>
<td>5.0</td>
<td>3.1</td>
<td>8.6</td>
<td>5.3</td>
</tr>
<tr>
<td>Female animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetal period</td>
<td>1.77</td>
<td>1.05</td>
<td>2.9</td>
<td>1.83</td>
</tr>
<tr>
<td>Birth–weaning</td>
<td>4.4</td>
<td>3.3</td>
<td>6.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Weaning–60-days</td>
<td>0.82</td>
<td>0.50</td>
<td>1.29</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Data are maximum likelihood estimates and confidence limits of cancer inductions per dose/(body weight$^{0.75}$-day) relative to comparably dosed adults (nine compounds, 153 tumor incidence observations).

MLE = Maximum Likelihood Estimate

Hattis, et al., EHP 113: 509-516, 2005
Implications for Risk Assessment & Standard Setting
Framework for Early Life Cancer Risk Assessment

Implementation Option 1: Pro-Rating

10x higher potency * early life dose * 2/70 yrs
+ 3x higher potency * older child dose * 13/70 yrs
+ 1x potency * adult dose * 55/70 yrs

Total Lifetime Cancer Risk
Implementation Option 2: Additive

1x Potency * Early Life (0-2) Dose

+

1x Potency * Adult Dose

Total Lifetime Cancer Risk

Each window of vulnerability receives adult slope factor without pro-rating. For example: Vinyl Chloride in Drinking Water

• Risk for continuous lifetime exposure in adulthood is 2.1E-05/ug/L
• Risk for continuous lifetime exposure from birth is 4.2E-05/ug/L
Outstanding Issues with Cancer Vulnerability

• **Mutagens vs. non-mutagens**
 – Only address mutagens quantitatively?
 • Non-mutagens on a case-by-case basis
 – Apply default to non-mutagen potency based upon limited data currently available?
 – Treat mutagens and non-mutagens alike?
 – Any carcinogen with low dose linear potency basis – assume mutagen-like vulnerability in early life?

• **Need to apply exposure and kinetics factors for vulnerability windows to the risk estimate**
Inhalation Risk Equation Adjustments for Early Life: Dose Approach

Modifying the adult risk equation for a MUTAGENIC toxic air contaminant

• 0-2 year-old critical period
 – Inhalation rate/body wt = 1.25 m³/kg/day

• Adult Exposure for 30 years
 – Inhalation rate/body wt = 0.286 m³/kg/day
 – Pro-rate for 30/70 yrs = 0.123 m³/kg/day

• Child/Adult Dose Adjustment Factor
 – 1.25/0.123 = 10.2
 – Lifetime cancer risk = (10.2*CSF)+(1*CSF) = 11.2*CSF

CSF = Cancer Slope Factor
Risk Equation Adjustments (continued)

- **Non-Mutagens**
 Adjustment factor = 2.3
 \[(CSF\times 10.2/8) + (CSF\times1)\]

- **Non-Carcinogens**
 Minimum chronic period = 7 yrs
 - Inhalation rate for 0-7 yrs = 1.1 m³/kg/day
 - Adult = 0.286 m³/kg/day (not prorated)
 Adjustment Factor = 1.1/0.286 = 3.8
Summary

• Children represent critical stages of chemical vulnerability due to:
 – Greater dose rate
 – Toxicokinetics
 – Vulnerability for some endpoints

• Initial steps now possible for incorporating children’s exposures and vulnerabilities into risk assessment