MARAMA’s Speciation Trends Network (STN) Project

The Joint MARAMA/NESCAUM Monitoring Meeting

Bill Gillespie
Mid-Atlantic Regional Air Management Association
October 19, 2004
Atlantic City West, NJ
Goal of the STN Project

…gain an understanding of the nature and extent of PM$_{2.5}$ pollution in the MARAMA Region…
Specific Objectives of the Project

- Identify the 20 “cleanest” and “dirtiest” PM$_{2.5}$ episodes during the 2000-2003 period
- Determine the composition of the PM$_{2.5}$ mass during these episodes
- Explore how composition varies by season and location
- Provide basic meteorological information about episodes (surface observation maps and back trajectories) (This is an optional task)
- Provide STN data to our members in a “user friendly” format
A Look at FRM Time Series Revealed Episodic Behavior…

Average FRM Measurements for 9 MARAMA Cities, Jul-Sep, 2001
Episodic Behavior Occurs Regardless of Season…

Average FRM Measurements for 9 MARAMA Cities, Oct-Dec, 2001
Episodes can be Selected by Severity and Duration

Average FRM Measurements for 9 MARAMA Cities, Jul-Sep, 2001
Collaborating on the Episodes

- We realize modelers and data analysts around the region are analyzing various episodes.
- We would like to collaborate with you!
- Please let us know which episodes you would like us to analyze.
Calculating the Mass of PM$_{2.5}$ Species using STN Data is Challenging...
Source of the STN Data

- State and local agencies
- EPA Region 3
- STN files posted on the Internet at:

http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsaqsdatal.html
Analyzing STN Data

- We were aware of some of the QA and uncertainty issues associated with STN data.

- So, we held some conference calls with EPA, RTI and others to explore these issues.

- Some of the issues discussed were:
 - Blank corrections
 - Minimum Detection Limits (MDLs)
 - Missing and flagged data
 - Methods for reconstructing PM mass
STN Data & STN Blanks in the MARAMA Region

<table>
<thead>
<tr>
<th></th>
<th>Measurements (µg/m³)</th>
<th>Blank Values (µg/m³)</th>
<th>% Avg. Blank to Avg. Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>Ammonium</td>
<td>2.02</td>
<td>13.8</td>
<td>0.029</td>
</tr>
<tr>
<td>Elemental Carbon</td>
<td>0.75</td>
<td>8.93</td>
<td>0.24</td>
</tr>
<tr>
<td>Nitrate</td>
<td>1.69</td>
<td>19.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Organic Carbon</td>
<td>4.68</td>
<td>73.9</td>
<td>0.02</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.96</td>
<td>3.43</td>
<td>0.03</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.172</td>
<td>3.84</td>
<td>0.03</td>
</tr>
<tr>
<td>Sulfate</td>
<td>5.16</td>
<td>35.9</td>
<td>0.023</td>
</tr>
<tr>
<td>Total PM2.5 Mass</td>
<td>14.2</td>
<td>239</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Many researchers have identified the need to blank correct STN organic carbon (OC) measurements. We have briefly examined two approaches:
- Averaging blank data for specific sites, and
- The regression technique suggested by Tolocka et al.
OC Blank Corrections: The “Averaging the Blanks” Approach

OC Blank Time Series, Lawrenceville, PA (AIRS 420030008)

Possible Outlier
OC Blank Corrections: The Regression Approach

OC Mass vs. Total PM2.5 Mass, Lawrenceville, PA (AIRS 420030008)

$y = 0.1501x + 1.9687$

$R^2 = 0.5015$
OC Blank Corrections: Comparison of the Two Approaches

<table>
<thead>
<tr>
<th>AIRS#</th>
<th>Site</th>
<th>State</th>
<th>Regression</th>
<th>Average OC Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>420030008</td>
<td>Lawrenceville</td>
<td>Allegheny Co.</td>
<td>Intercept</td>
<td>1.97</td>
</tr>
<tr>
<td>371190041</td>
<td>Mecklenburg</td>
<td>NC</td>
<td>Intercept</td>
<td>2.23</td>
</tr>
<tr>
<td>371070004</td>
<td>Lenoir</td>
<td>NC</td>
<td>Intercept</td>
<td>0.25</td>
</tr>
<tr>
<td>340390004</td>
<td>Union</td>
<td>NJ</td>
<td>Intercept</td>
<td>2.45</td>
</tr>
<tr>
<td>420010001</td>
<td>Arendtsville</td>
<td>PA</td>
<td>Intercept</td>
<td>1.56</td>
</tr>
<tr>
<td>420270100</td>
<td>State College</td>
<td>PA</td>
<td>Intercept</td>
<td>1.40</td>
</tr>
<tr>
<td>Averages</td>
<td></td>
<td></td>
<td>Regression</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Outliers have not been removed.
An Important Issue Associated with Reconstructing PM$_{2.5}$ Mass

DRI “Traditional” Reconstructed Mass Equation

1. Unidentified = Measured Mass - Reconstructed Mass
2. Geological = AVERAGE (AlO+AlO2)+SiO2+CaO+AVERAGE(FeO+FeO2) = 1.89*Al + 2.4*Si + 1.4*Ca + 1.43*Fe
3. Organics = 1.4*OC [Used to be 1.2*OC, can be 2.1*OC]
4. Soot = EC
5. Nitrate = Nitrate
6. Sulfate = Sulfate
7. Ammonium = Ammonium
8. Salt = 1.65*Cl (XRF)
9. Trace Elem. = SUM (XRF Measured Species) - (Al+Si+Ca+Fe+S+Cl)
10. Reconstructed Mass = SUM (Items 2-9)
Some Questions Regarding OC Mass

- Is it important to blank correct OC mass data if the OC reconstruction factor is so poorly known?
- How can we estimate the OC factor for a site?
 - If the OC factor varies by season and is a function of weather conditions and emissions, can an average factor for a site be developed?
 - Can PAMS data or other data provide an estimate of the OC factor?
 - Can we “back out” the OC mass if other mass constituents are adequately known?
Deliverables from the MARAMA STN Project
Deliverables

- Excel datasets for each STN monitor in the MARAMA Region, arranged in date order, a column for each analyte.
- A report summarizing the analysis of the data.
Deliverables

- What should be included in the analysis and the final report?
- How should results be presented?
Episode Analysis

Average FRM Measurements for 9 MARAMA Cities, Jul-Sep, 2001

Concentration (ug/m³)

PM2.5 Species, 8/2-12/01, Baltimore, MD (AIRS 240053001)
Weather Maps and Back Trajectories

Surface observations with fronts and pressures

HYPLIT back trajectories

HYPLIT model output courtesy of Bill Ryan, Penn State University
Time Series

Time series plots showing how analytes vary over time.

Lawrenceville, PA time series courtesy of Jason Maranche, Allegheny County Health Department
PM$_{2.5}$ Composition by Region and Season

Sample figure from “Particulate Matter Science for Policy Makers – A NARSTO Assessment”
We value your input!