2005 Update: Delaware’s Experience with a Continuous PM2.5 Monitor: The Andersen BAM

In Search of FRM-Like Data – The search goes on . . .

Betsy Frey, Delaware Air Quality Mgmt
MARAMA Monitoring Meeting
November 16, 2005
Andersen Series FH62 C14 Continuous Ambient Particulate Monitor, aka BAM

- Beta Attenuation Monitor
- Configuration:
 - SSC PM2.5 inlet
 - 35° C temp
 - No correction factor
BAM at two sites

- MLK site began November 2002
 - Collocated with:
 - two FRMS (daily and 1-in-6 days)
 - TEOM PM10 (converted back from PM2.5)
 - Located on top of shelter platform

- Killens Pond site began April 2003
 - Collocated with one 1-in-3 day FRM
 - Inlet on top, sampler inside station shelter
MLK PM2.5 FRM vs BAMS
November 2002 - March 2003

\[y = 1.1555x - 1.1184 \]

\[R^2 = 0.9371 \]

1 to 1 line
MLK PM2.5 FRM vs BAMS
April 1, 2003 - October 15, 2003

\[y = 0.9342x - 3.2829 \]

\[R^2 = 0.9579 \]

1 to 1 line
BAM Since 2003

- Continued operation at MLK, Killens
- Added Newark, Seaford
- Tried to add collocated BAM at MLK
 - Never stabilized
 - Returned to Thermo for repair or replacement
- Modified procedures for audit and operator checks
MLK Difference in ug BAMS - FRM
Nov. 2002 through September 2005
MLK PM2.5 Winter FRM vs BAM
Dec. 03 - Feb 04, Nov 04 - Feb 05

$y = 1.1483x - 5.9444$

$R^2 = 0.8999$
MLK PM2.5 FRM vs BAM
Mar - Oct 03, Mar - Nov 04, Mar - Oct 05

\[y = 0.9052x - 3.4315 \]
\[R^2 = 0.9106 \]
MLK Difference in ug BAMS (corrected) - FRM
Nov 02 - Sep 05
2003 - 2005 MLK FRM vs BAM corrected using multi-year seasonal averages excludes winter 2002

\[y = 0.9969x + 0.1217 \]

\[R^2 = 0.9098 \]
Problem in July 2005

- Very high humidity - BAM spikes/drops, poor correlation with FRM
- Consult with Thermo – Kevin Goohs
- Recommendation – use seasonal heater tube temperature settings
 - Summer – 50 deg C
 - Spring and Fall – 35 deg C
 - Winter – 25 deg C
- These are temps for the inlet tube, not the aerosol
How is it going?

- Made adjustments last week of July 2005
- Improved stability (fewer spikes/drops)
- Slightly improved correlation with FRM
- Will run for one year and re-evaluate
MLK BAMS - FRM Difference
Nov. 2002 through September 2005

Avg diff = 4.1 ug/m3
Std dev = 3.4 ug/m3
MLK Adjusted BAMS - FRM Difference
Nov 02 - Sep 05

Avg diff = 0.0 ug/m³
Std dev = 2.4 ug/m³
Killens BAMS - FRM Difference
2003 - 2005

Avg diff = 0.7 ug/m3
Std dev = 2.7 ug/m3
Killens Adjusted BAMS - FRM Difference
2003 - 2005

Avg diff = -0.1 ug/m³
Where are we now?

- Is the BAM data similar enough to the FRM data to replace an FRM?
Compare annual average NAAQS

<table>
<thead>
<tr>
<th>Year</th>
<th>BAM</th>
<th>FRM</th>
<th>Adj BAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Q03</td>
<td>16.2</td>
<td>17.3</td>
<td>17.7</td>
</tr>
<tr>
<td>2Q03</td>
<td>18.9</td>
<td>14.6</td>
<td>14.4</td>
</tr>
<tr>
<td>3Q03</td>
<td>21.5</td>
<td>16.8</td>
<td>16.8</td>
</tr>
<tr>
<td>4Q03</td>
<td>17.4</td>
<td>13.1</td>
<td>13.5</td>
</tr>
<tr>
<td>Avg</td>
<td>18.5</td>
<td>15.5</td>
<td>15.6</td>
</tr>
<tr>
<td>1Q04</td>
<td>16.9</td>
<td>14.7</td>
<td>13.4</td>
</tr>
<tr>
<td>2Q04</td>
<td>22.7</td>
<td>15.5</td>
<td>16.0</td>
</tr>
<tr>
<td>3Q04</td>
<td>23.3</td>
<td>16.4</td>
<td>16.5</td>
</tr>
<tr>
<td>4Q04</td>
<td>18.2</td>
<td>13.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Avg</td>
<td>20.3</td>
<td>14.9</td>
<td>14.6</td>
</tr>
<tr>
<td>1Q05</td>
<td>19.0</td>
<td>16.2</td>
<td>14.7</td>
</tr>
<tr>
<td>2Q05</td>
<td>18.1</td>
<td>12.5</td>
<td>13.5</td>
</tr>
<tr>
<td>3Q05</td>
<td>21.1</td>
<td>17.0</td>
<td>16.5</td>
</tr>
<tr>
<td>4Q05</td>
<td>19.4</td>
<td>15.2</td>
<td>14.9</td>
</tr>
<tr>
<td>Avg</td>
<td>19.4</td>
<td>15.2</td>
<td>15.1</td>
</tr>
<tr>
<td>3-yr Avg</td>
<td>19.4</td>
<td>15.2</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Compare 24-hour NAAQS

<table>
<thead>
<tr>
<th></th>
<th>BAM</th>
<th>FRM</th>
<th>Adj BAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>42.0</td>
<td>37.3</td>
<td>39.0</td>
</tr>
<tr>
<td>2004</td>
<td>42.5</td>
<td>33.8</td>
<td>33.2</td>
</tr>
<tr>
<td>2005</td>
<td>38.9</td>
<td>38.0</td>
<td>33.1</td>
</tr>
<tr>
<td>3-yr avg</td>
<td>41.1</td>
<td>36.3</td>
<td>35.1</td>
</tr>
</tbody>
</table>
Conclusion

- Andersen BAM –
 - Good for diurnal patterns
 - Generally consistent with FRM, especially for longer term averages, but not close enough for areas near the NAAQS
- May be affected by high ambient humidity; can compensate with heater tube temperature adjustment
- Current focus – precision (collocated BAM) and seasonal temperature adjustments
The Night Before Thanksgiving