North Carolina Approach to Weight of Evidence

February 6, 2007
Workshop on Weight of Evidence
Demonstrations for Ozone SIPs
Cape May, NJ

Sheila Holman
North Carolina Division of Air Quality
Weight of Evidence

- Observational analyses
- Emissions analyses
- Variations of the modeling data
Observations

• Current 2004-2006 ozone design values are not much higher than the standard or the 2009 modeled design values in the Charlotte area.
Design Values in Charlotte

<table>
<thead>
<tr>
<th>Location</th>
<th>2004-2006</th>
<th>2009 (modeled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Line</td>
<td>88 ppb</td>
<td>85 ppb</td>
</tr>
<tr>
<td>Garinger</td>
<td>88 ppb</td>
<td>84 ppb</td>
</tr>
<tr>
<td>Enochville</td>
<td>85 ppb</td>
<td>84 ppb</td>
</tr>
<tr>
<td>Rockwell</td>
<td>83 ppb</td>
<td>83 ppb</td>
</tr>
<tr>
<td>Arrowood</td>
<td>80 ppb</td>
<td>75 ppb</td>
</tr>
<tr>
<td>Crouse</td>
<td>79 ppb</td>
<td>78 ppb</td>
</tr>
<tr>
<td>Monroe</td>
<td>78 ppb</td>
<td>76 ppb</td>
</tr>
<tr>
<td>York</td>
<td>76 ppb</td>
<td>71 ppb</td>
</tr>
</tbody>
</table>
Past, Present and Future
8-hour Ozone Design Values
Observations

- NOx reductions that have occurred since 2002 have resulted in real reductions in ozone

![NOx emissions from Electric Generating Units (EGUs)
(Facilities subject to Title IV)]
Temps vs. Exceedances

• The next 2 slides show number of days $\geq 90^\circ$F compared to number of exceedance days and the maximum 4th highest value in the area.

 – Can see that in years when there were 40 or more days with high temps $\geq 90^\circ$F that there were more than 30 exceedance days per year except for 2005 when only 11 exceedance days occurred.

 – When looking at the the maximum 4th highest ozone value in the area compared to temperature, it is even more telling with the maximums being well over 100 ppb when there were more than 40 days with high temps $\geq 90^\circ$F compared to 2005 where the max 4th highest 8-hour ozone value was 90 ppb

• This demonstrates that NOx reductions that have occurred since 2002 have resulted in real reductions in ozone.
Temps vs. Exceedances

Metrolina 8-hour Ozone - # Days Hi ≥90F vs Exceedance Days

Days Hi Temp ≥90F
May-Sep

Exceedance Days

Days Temperature ≥90F

Days O3 ≥ 85 ppb
Temps vs. Exceedances

Metrolina 8-hour Ozone - # Days Hi ≥90F vs Max 4th Highest

- # Days Hi Temp ≥90F
- May-Sep

Graph showing the comparison between the number of days with temperature ≥90F and the maximum 4th highest values from 1996 to 2005.
Precipitation vs Exceedances

• The next 2 slides show number of days with measurable precipitation compared to number of exceedance days and the maximum 4th highest 8-hr ozone value in the area.
 – Can see that in years when there were fewer than 80 days with measurable precipitation, in general there were more than 25 exceedance days per year except for 2005 when only 11 exceedance days occurred.
 – When looking at the the maximum 4th highest ozone value in the area compared to precipitation, it is even more telling with the maximums over 100 ppb when fewer than 80 days with measurable precipitation compared to 2005 where the max 4th highest 8-hour ozone value was 90 ppb
 – The year most comparable to 2005 was 2002 where there were 74 days with measurable precip. The max 4th highest value for 2002 was 108 ppb compared to 90 ppb in 2005
Precipitation vs Exceedances

Metrolina 8-hour Ozone - May-Sep Days w/ Measurable Precip vs Max 4th Highest

Days w/ Measurable Precip

Max 4th Highest

Days w/ Measurable Precip vs Max 4th Highest
Additional Observational Analyses

Cox and Chu
 – Uses a probability distribution of meteorological severity based on climatological data
Emissions Analysis

North Carolina Statewide NOx Emissions

NC Statewide NOx Emissions

- **Area**
- **On-road Mobile**
- **Point**
- **Nonroad**

Past, Present and Future
8-hour Ozone Design Values

Charlottesville
Enochville
Rockwell
Garinger (Plaza)
Crouse
Arrowood
Monroe
York, SC
Millbrook
St. Augustine
Butner
Duke St.
Franklinton
Bushy Fork
Tower
W. Johnston
Fuquay-Varina
Pittsboro
Leggett

Modeled
Designations

ppm

2002 2003 2004 2005 2006 2007 2008 2009

00-02 01-03 02-04 03-05 04-06 07-09

16
Close to attaining now and significant NOx reductions yet to come…

...Prior to 2009 ozone season

- **Allen Steam Station (Gaston County)**
 - 2 units to get SNCR controls installed
 - ~300 tons NOx per ozone season reduced
- **Buck (Rowan County)**
 - All 4 units still to be controled
 - ~350 tons NOx per ozone season reduced
- **Marshall Steam Station (Catawba County)**
 - 2 units to get SNCR controls, 1 unit SCR
 - ~2,300 tons NOx per ozone season reduced
- **Riverbend (Gaston County)**
 - All 4 units to get SNCR controls
 - ~325 tons NOx per ozone season reduced
Close to attaining now and significant NOx reductions yet to come...

...Prior to 2009 ozone season

- In the Charlotte nonattainment area, NCDAQ has estimated that NOx from mobile sources (on-road plus off-road) will be reduced by approximately 8.5 tons per year through 2009.
Overgrown 2009 emissions?

- USEPA draft “working paper” shows a disconnect between emissions forecasts for certain non-EGU sources and the historical record
- Forecasts have typically shown non-EGU emissions going up with time, while actual emissions have gone down with time.
- Thus, many previous non-EGU emissions forecasts have been significantly over-predicted
- Impacts of equipment and fuel replacements/upgrades were not properly considered.

• Have we modeled 2009 with overgrown non-EGU emissions???
Overgrown 2009 emissions?

Weight of Evidence Metric Idea!!!

- Recalculate 2009 non-EGU NOx emissions without using economic activity (follow USEPA’s “interim approach”)
- Present the difference in the projections as a weight of evidence metric… Depending on your make up of sources, this may be a meaningful metric

2009 modeled non-EGU NOx minus the 2009 non-EGU NOx emissions without econ activity

For more information on the USEPA Draft Working Paper, see:

http://www.epa.gov/ttn/ecas/workingpapers/forecasting_emissions_8-4-06_draft_document.pdf
Variations of modeling data
Modeling WOE metrics

Alternative Attainment Test Approaches

- Alternative DVC Calculations
 - 3-year DVC centered on 2002 base year
 - 5-year DVC straight average (no weighting)
- Alternative RRF Calculations
 - Center grid cell instead of max of “array”
 - Weighting scheme focused on center grid cell in an array with some consideration of the surrounding cells
 - 70 ppb cut off for including days

Corroborative WOE Analyses
Modeling WOE metrics

Corroborative WOE Analyses (See USEPA modeling guidance for more information)

- Persistence-Hr (# Grid-hours)
 - Relative diff in hourly 8-hr concentrations
- Persistence-Max (# Grid-hours)
 - Relative diff in max 8-hr concentrations
- Severity-Hr (# Grid-hour-ppb)
- Severity-Max (# Grid-hour-ppb)
- Air Quality Index Counts
Modeling WOE metrics

Percent Reduction in Persistence (#grid-cells ≥ 85 ppb) of Daily Max 8-h O₃

Unifour EAC

<table>
<thead>
<tr>
<th>Episode</th>
<th>2007</th>
<th>2012</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>95Epi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96Epi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97Epi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95697Epi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modeling WOE metrics
For additional info

Sheila Holman
NCDAQ Chief of Planning
919-715-0971
Sheila.Holman@ncmail.net

www.ncair.org