Emission Inventories and Modeling

Tad Aburn, Air Director
Maryland Department of the Environment
Topics Covered

• Background

• The key role of inventories

• Issues
 – Speed
 – Weight of Evidence
 – Growth
 – Cap-and-trade and other market-based and non-traditional programs
 – Chemistry/meteorology
 – The enemy of the good

• The future
 – Continued collaboration
Background

• My perspective
 – I’m a regulator
 • Inventory basics:
 – Where are we starting from
 – How to reduce emissions to achieve goals and standards
 – Basic building block for State Implementation Plans (SIPs)

• Modeling
 – More focused on regulatory modeling
 – Also work with U of M on research modeling

• The key role of inventories

“ALL MODELS ARE WRONG; SOME ARE USEFUL”

- George Box, mentor of W. Edwards Deming
Inventories – The Basic Building Block

• What causes our air pollution?
• Where are we starting from?
• Where do we need to get to?
• Will this or that solve our problem?
• How to insure progress?
Inventory Issues

From a Modeling Perspective

• Speed
• Weight of Evidence
• Growth
• Cap-and-trade and other market-based and non-traditional programs
• Chemistry, meteorology and other tech issues
• The enemy of the good
Faster and Faster

• Policy process continues to become more dynamic
 – Answers in days and weeks not months and years
 – OTC’s use of CALGRID as a screening tool and CMAQ for the SIPs

• Inventory world needs to be able to react to this dilemma
 – Use of best available inventory for desired purpose
 – Need for iterative policy making process
 – Ability to characterize the uncertainty of the inventory in a way that is relevant to the policy issue under consideration
Weight of Evidence

or ... the fuzzy SIP

Philadelphia 8-Hour Ozone NAA WOE Attainment Demonstration

Without Voluntary Measures & With Voluntary Measures

<table>
<thead>
<tr>
<th>Site Name - County, State</th>
<th>Site ID Number</th>
<th>Observed</th>
<th>Modeled</th>
<th>WOE - Without Voluntary Measures</th>
<th>Modeled</th>
<th>WOE - With Voluntary Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmland - Cecil Co., MD</td>
<td>240150003</td>
<td>79.7</td>
<td>81.7</td>
<td>72.7</td>
<td>75.8 - 76.0</td>
<td>73.7</td>
</tr>
<tr>
<td>Brandywine Creek - New Castle Co., DE</td>
<td>100231019</td>
<td>82.7</td>
<td>81.7</td>
<td>75.2</td>
<td>79.3 - 79.4</td>
<td>77.7</td>
</tr>
<tr>
<td>Bellefonte - New Castle Co., DE</td>
<td>100031013</td>
<td>80.3</td>
<td>78.4</td>
<td>71.9</td>
<td>75.0 - 75.0</td>
<td>69.9</td>
</tr>
<tr>
<td>Hills Pond - Kent Co., DE</td>
<td>100100002</td>
<td>86.3</td>
<td>78.4</td>
<td>72.9</td>
<td>70.0 - 70.0</td>
<td>65.0</td>
</tr>
<tr>
<td>Lees - Sussex Co., DE</td>
<td>100021003</td>
<td>87.0</td>
<td>78.4</td>
<td>72.0</td>
<td>75.8 - 76.0</td>
<td>67.5</td>
</tr>
<tr>
<td>Lums Pond - New Castle Co., DE</td>
<td>100031007</td>
<td>94.5</td>
<td>79.4</td>
<td>71.3</td>
<td>74.4 - 74.5</td>
<td>69.8</td>
</tr>
<tr>
<td>Seaford - Sussex Co., DE</td>
<td>100051002</td>
<td>80.0</td>
<td>75.4</td>
<td>87.5</td>
<td>70.0 - 84.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Colliers Mls - Ocean Co., NJ</td>
<td>340200005</td>
<td>100.7</td>
<td>81.0</td>
<td>83.7</td>
<td>85.6 - 87.5</td>
<td>76.2</td>
</tr>
<tr>
<td>River - Mercer Co., NJ</td>
<td>340210005</td>
<td>97.0</td>
<td>80.0</td>
<td>80.5</td>
<td>83.0 - 84.5</td>
<td>76.0</td>
</tr>
<tr>
<td>Amora State Hospital - Camden Co., NJ</td>
<td>340071001</td>
<td>100.7</td>
<td>87.8</td>
<td>80.2</td>
<td>83.3 - 84.5</td>
<td>72.7</td>
</tr>
<tr>
<td>Camden - Camden Co., NJ</td>
<td>340070003</td>
<td>96.0</td>
<td>59.0</td>
<td>82.9</td>
<td>68.0 - 70.0</td>
<td>76.4</td>
</tr>
<tr>
<td>Clarkesville - Gloucester Co., NJ</td>
<td>340150001</td>
<td>86.5</td>
<td>86.0</td>
<td>82.9</td>
<td>80.0 - 76.0</td>
<td>75.4</td>
</tr>
<tr>
<td>Millville - Cumberland Co., NJ</td>
<td>340110007</td>
<td>85.7</td>
<td>81.0</td>
<td>73.7</td>
<td>75.4 - 77.0</td>
<td>64.7</td>
</tr>
<tr>
<td>Nanticoke Creek - Atlantic Co., NJ</td>
<td>340100005</td>
<td>80.0</td>
<td>77.0</td>
<td>71.0</td>
<td>74.7 - 74.8</td>
<td>70.0</td>
</tr>
<tr>
<td>Bristol - Bucks Co., PA</td>
<td>420170012</td>
<td>96.0</td>
<td>80.0</td>
<td>82.5</td>
<td>85.0 - 87.0</td>
<td>76.5</td>
</tr>
<tr>
<td>West Chester - Chester Co., PA</td>
<td>420200006</td>
<td>95.0</td>
<td>62.0</td>
<td>75.5</td>
<td>78.0 - 79.0</td>
<td>65.0</td>
</tr>
<tr>
<td>New Garden - Chester Co., PA</td>
<td>420200010</td>
<td>94.7</td>
<td>78.0</td>
<td>71.2</td>
<td>74.3 - 76.8</td>
<td>62.2</td>
</tr>
<tr>
<td>Chester - Delaware Co., PA</td>
<td>420140002</td>
<td>91.7</td>
<td>81.0</td>
<td>75.7</td>
<td>78.8 - 78.8</td>
<td>60.7</td>
</tr>
<tr>
<td>Norristown - Montgomery Co., PA</td>
<td>420100013</td>
<td>62.3</td>
<td>91.0</td>
<td>70.4</td>
<td>75.8 - 83.0</td>
<td>69.4</td>
</tr>
<tr>
<td>Elmwood - Philadelphia Co., PA</td>
<td>421010003</td>
<td>83.0</td>
<td>76.0</td>
<td>71.0</td>
<td>74.7 - 78.0</td>
<td>65.0</td>
</tr>
<tr>
<td>La - Philadelphia Co., PA</td>
<td>421010004</td>
<td>71.8</td>
<td>84.0</td>
<td>80.4</td>
<td>82.5 - 84.8</td>
<td>65.0</td>
</tr>
<tr>
<td>Foxborough - Philadelphia Co., PA</td>
<td>421010104</td>
<td>80.7</td>
<td>82.0</td>
<td>77.7</td>
<td>80.8 - 82.5</td>
<td>71.7</td>
</tr>
<tr>
<td>Northeast Airport - Philadelphia Co., PA</td>
<td>421010304</td>
<td>95.7</td>
<td>87.0</td>
<td>82.2</td>
<td>85.3 - 87.0</td>
<td>74.7</td>
</tr>
</tbody>
</table>
Dealing With Uncertainty

• Weight of Evidence
 – EPA guidance
 – More generally …
 • Addressing uncertainty qualitatively and quantitatively

• Tougher standards will make simple “bright line” attainment demonstrations more difficult
 – Is the bright line test really honest?

• Inventory world help
 – Minimally, explaining uncertainty
 – How about multiple inventories?
 • As an example, different growth scenarios
Growth

• One of the key inventory/policy issues that Maryland is looking at

• How do we capture the benefits - in SIPs – from non-regulatory efforts
 – Climate change initiatives
 • Reduced energy consumption
 • Alternative transportation concepts
 – Education programs

• Again, should we be using several plausible growth scenarios in SIPs
 – Best case
 – Less than best case
IPM got it right … sort of

• Cap-and-trade and other market based programs present great challenges for both the inventory and modeling worlds

• Need tools like IPM and Haiku to forecast how trading may work

• Also, however, need some kind of a reality check process connected to the projections

• Again
 – Should there be several plausible scenarios for how emissions may look in the future

• Encourage continued serious debate and innovation on this issue
Tough Technical Issues

• Model dynamics drive us to push for inventory improvements in many areas
 – Already an active dialogue on most of these technical issues

• Chemistry
 – Speciation, biogenics, difficult but important pollutants like ammonia, condensables, etc.

• Meteorology
 – Aloft chemistry, transport of precursors, etc.

• Both
 – Spatial and temporal profiles
Perfection

- This is a tough one

- I hire emissions people who are detail and perfection oriented

- Sometimes the inventory only needs to be “good enough”
 - Screening
 - Other more important pollutants
 - Routinely ask … “How good does this really need to be”
 - Document
Key Issues For the Future

- Regional Processes
 - Coordination and collaboration are critical
 - Inter-RPO discussions on emissions and modeling have been highly successful and should continue
 - Sharing emissions data and modeling inventories is becoming increasingly important
 - Because of transport
 - I care as much about your state’s emissions as my own states
Regional Cooperation

- State resources more limited than ever

- Need to insure that regions work together on key technical issues and results benefit all
 - Bigger bang for the buck

- RPOs have worked very hard on this and we need to continue cooperation
QUESTIONS?