Overview

What do you want to learn or hear about?

Expressed Interest By MARAMA Participants
HgCEMS Webinar

Number of Inquiries

- Regulations
- HgCEMS
- Low-Level Accuracy
- Hg Ranges
- Operations
- Exp.
- QA/QC
- Cost
Air Pollution Control and Monitoring
Regulatory Frameworks in Play

- **State and Local Regulations**
 - Maybe more stringent than EPA EGU MACT
 - Will require new Air Pollution Control Equipment
 - Plant Operations and Reporting may be different

- **Consent Decrees**

- **CAMR Vacature & Impacts**
 - Many HgCEMS mothballed
 - Limited data for planning in some cases

- **Projected EPA Utility MACT**
 - Hg Emissions Limits 1.2 lbs/Trillion BTU (~1.5 ug/m³ -w/o headspace)
 - Many Plants will be mothballed or decommissioned (some already announced)
 - New Abatement Strategies will be introduced – some not fully vetted yet
 - New Coal-Fired EGU Limits under review
Use and Experience with HgCEMS

- Selection of HgCEMS - Electronic or Sorbent Trap?
- HgCEMS Commissioning, Training
 - More complicated than Criteria Pollutant CEMS (e.g. SOx, NOx)
- Service and Maintenance Requirements
 - Early Stages 10-20 hours/week/HgCEMS
 - ~5 hours/week/HgCEMS after learning curve
- HgCEMS for Abatement Systems Performance Monitoring and Assessment
- Regulatory Reporting of Hg Emissions
Tekran 3300 HgCEMS

Consists of:

1. **Probe** (M&C and Tekran designs – not shown),
2. **Umbilical** (Multiple Suppliers)
3. **3310 Elemental (Hg0) Calibrator**
4. **3315 Ionic (Hg$^{2+}$) Calibrator**
5. **3320 Conditioner**
6. **2537S Analyzer** (same technology as Tekran Ambient Hg — LLD <0.1 ng/m³, on-board Hg Perm Source)
7. **Controller** (multiple options)
MARAMA/ICAC
Mercury CEMS Webinar

Use and Experience with HgCEMS

- HgCEMS Low-Level Measurements Accuracy
- Hg Generators – Tekran 3310 (Hg⁰), 3315 (Hg²⁺), Permeation Source (Hg⁰)
- EPA NIST-Traceability Requirements and Compliance
- “Hot-Swap” Program
- Development of Operating Strategies to Incorporate Start Up, Shut Down, and Malfunction
Some Challenges and Opportunities with HgCEMS Operations

Example Challenges

- More Complicated than Conventional CEMS
- Greater cost of Operations including NIST Traceability
- Expensive Heated Umbilicals – and some failures of same

Example “Opportunities”

- Electronic HgCEMS can be used to monitor and optimize the performance of abatement systems such as ACI
- Hg Emissions data can be used to track and forecast 30-day rolling averages and manage Plant or Fleet-wide Hg Abatement optimization
Summary of HgCEMS Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Issues</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-Fired EGU</td>
<td>Wet Stack Carryover</td>
<td>Hg 0.0 – 40 ug/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Will be 10 – 20 % of above</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>Large Swings in Hg</td>
<td>Mill On Hg 1.0 – 50 ug/m³</td>
</tr>
<tr>
<td></td>
<td>Mill On/ Mill Off</td>
<td>Mill Off 0 – 1000 ug/m³</td>
</tr>
<tr>
<td>Waste to Energy</td>
<td>Chlorides variations or sample train contamination</td>
<td>Hg Abated 1.0 – 10 ug/m³</td>
</tr>
<tr>
<td>Munitions Incineration</td>
<td>High Swings in Hg Loadings and Concentrations</td>
<td>Hg 0.0 – 1000 ug/m³</td>
</tr>
<tr>
<td>Abatement Research</td>
<td>Different Technologies, ACI, FGD, DSI, ESPs, FF, KNX (CaBr)</td>
<td>Assist Pollution Control Equipment Providers in Laboratory/Pilot Research and Field Validation Tests</td>
</tr>
</tbody>
</table>
EGU - Mercury Monitoring and Analyses Opportunities
Importance of Monitor Availability and Accurate Low-Level Hg Measurements

- Demonstrate compliance with MACT regulations
- Avoid Penalties associated with Data Substitution
- Document and predict 30-day rolling averages of Hg emissions (*includes Start Up, Shut Down and Malfunction*)
- Support accurate performance and optimization of Hg control equipment
Projection of Low-Level Hg Concentrations

Note the need for Low-Level Mercury Measurements!!!
All your measurements will be down here!
Results of Unit 1 OH Tests

- **Hg Concentration (μg/m³)**
 - **OH Tests**
 - **Tekran**
 - **Difference**

Average Difference < 0.09 μg/m³

(Actual RATA Results on Tekran 3300 System)
Example: Mercury Abatement Annual Cost
Sorbent Injection – 500 Mwe Coal-fired Plant

Mercury Removal Costs

$1000

Hg Removal Efficiency

0%
20%
40%
60%
80%
100%

0
500
1000
1500
2000

Efficiency
ug/m3

The last 15% removal may cost an additional 50%. ($1 million/year!)

Low-level measurement accuracy more important than ever!
Are there traceable calibration gas cylinders for Hg?

No. There are currently no acceptable Hg calibration gases available in cylinders – as exist for SOx, NOx, etc.
What is NIST Traceability for Mercury About?

- EPA has released interim traceability protocols for Hg calibrators (July 2, 2009) (http://www.epa.gov/airmarket/emissions/mercury/hgmonitoring.html)

- NIST may not currently be prepared for the PC MACT regulations:
 1. *Not yet capable of certifying low (sub µg/m³) concentrations for MACT Utility rule; lowest point to date is 0.5 µg/m³ with 5-6% uncertainty (2σ)*
 2. *Have not yet certified high-level (~250 µg/m³) concentrations for PC MACT*
 3. *Cannot certify HgCl₂ generators*
Mercury Traceability

- Tekran has and continues to assist NIST and EPA with the “science” of Hg Generator Traceability.

- Tekran 3300 HgCEMS have three (3) Hg generators on board.
 - Elemental Generator (Hg⁰), Permeation Source and Ionic (Hg²⁺)
 - Only Tekran HgCEM Systems Hg generators can be extended to 8 rolling quarters before certification.

- Tekran can support traceability programs for any electronic HgCEMS.
Why are CEM Commissioning, Training, and Service/Aftermarket Support Important?

Commissioning process: validates CEM performance, initiates site awareness and ownership of systems, establishes relationship between supplier and owner. **Training** is critical for on-site ownership of CEM Operations, Maintenance, etc. Particularly beneficial for Percent Monitor Availability (PMA% - see graph) and Abatement Systems Performance Monitoring and Optimization (Slide 20). **Service/Aftermarket Support** is **Critical** for on-going compliance and “ownership” of CEMS Operations and Maintenance.

![Graph showing Percent Monitor Availability for Alliant Energy Plants]

- **PMA** 97.1%
Definitive Low-Level CMM Study

EERC - ICCI - EPRI
Summary of EERC Low-Level HgCEMS Data
Some Potential EPA Actions

- Fix RATA limits
 - Not too tight, but a window of ±0.8 μg/m³ when measuring < 1 μg/m³ is not appropriate

- Expand EPA “NIST Traceability” Protocols
 - Must work lower than Span Range of 5 μg/m³
 - While they are at it …
 - Verify that protocols work at high concentrations for Cement MACT rule (e.g. 250 μg/m³ Span Range)
NIST Actions Needed

EPA must fund these activities since NIST will not likely devote the resources to do it on their own

- Improve NIST ability to measure lower concentrations with less uncertainty
 - Best current ability: 0.5 μg/m3 with 6.1% uncertainty (@95%)
- “Routine” elemental generator certifications can take multiple attempts and require over a year to complete!
NIST Actions Needed

- Ability to certify high concentrations for Cement MACT

- Learn how to measure HgCl$_2$
 - Maybe even certify HgCl$_2$ generators?
 - Not that essential since current CMMs all use Hg0 to calibrate themselves

- Other things for NIST to tackle:
 - Resolve Hg0 headspace vapor concentration issue
 - Resolve the difference in calibrator outputs:
 - HgCl$_2$ liquid vaporization vs. elemental oxidation difference
Summary

- EERC low-level mercury study was very well done
 - Reports still need some work

- Existing Tekran Series 3300 systems can easily measure sub-\textmu g/m^3 mercury levels in actual coal flue gas effluent streams
 - Good zeros, accurate readings under all conditions
 - Shown in both EERC study and in the field since 2005
 - Have never failed a RATA at any level (*Over 200 done*)

- EPA and NIST have some work to do to get ready for the Utility MACT
MARAMA/ICAC
Mercury CEMS Webinar

Discussion and Action Items

- Review of Objectives and Expressed Areas of Interest
- Other Questions and Answers
- Action Items