Agriculture and Climate Change

- Sources
- Sinks
- Control of GHGs from agriculture
- Co-benefits for water quality
- Production of biofuels
- USDA programs for implementation
U.S. Sources of GHGs

- Transportation: 28%
- Industrial: 20%
- Residential & Commercial: 11%
- Agriculture: 7%
- Electricity: 34%
Agricultural GHG Emissions

- Other direct sources (CH₄ & N₂O) 2%
- Manure management (CH₄ & N₂O) 12%
- Energy use (CO₂) 14%
- Enteric fermentation (CH₄) 29%
- Soil management (N₂O) 43%

Agricultural Emissions in million metric tons (MMT) of CO₂e
Agriculture Sources of GHGs

- Soil Management
 - fertilizer applications - N2O
 - livestock manure applications - N2O
 - cropping practices – CO2
 - drainage/irrigation – N2O

- Land use changes
 - conversion from native vegetation or pasture to cropland – CO2

- Livestock
 - enteric fermentation (digestion) – CH4
 - animal waste storage – CH4
Agriculture Sources of GHGs

• Rice cultivation and field burning of agricultural residues -- 2% of non-energy related direct GHG emissions from agriculture.

• Energy use
 • 3rd largest source, 14% of total agricultural emissions
 • Direct use for farm activities
 • electricity used to power irrigation pumps
 • fuels for field equipment--tractors, combines, etc.
 • Indirect use
 • emissions associated with the production of commercial fertilizers and other energy-intensive farm inputs.
Agriculture Sources of Water Quality Impairments

- **Soil Management**
 - fertilizer applications
 - livestock manure applications
 - cropping practices
 - drainage/irrigation

- **Land use/hydrology changes**
 - conversion from native vegetation or pasture to cropland
 - channelizing streams

- **Livestock**
 - animal production areas

- **Pathogens, animal hormones and pharmaceuticals, pesticides**
Agriculture Carbon Sink: SOIL

- Carbon can remain in soils for thousands of years, effectively storing or sequestering CO2 from the atmosphere.

- Relative to native ecosystem levels, most agricultural soils are depleted in carbon, having lost 30-50% of their original carbon levels.

- Carbon in cropland soils can be regained with improved management.
Reducing Agriculture Sources of GHGs

Soil Management

- Fertilizer and Manure Applications
 - Nutrient Management
 - method of application
 - rate of application
 - timing of application
 - form of fertilizer
 - Cover Crops
 - Water Management
 - controlled drainage
 - constructed wetlands

- Cropping Practices
 - Tillage
 - continuous no-till
 - Crop Rotations
 - additional crops beyond corn and soybeans
Reducing Agriculture Sources of Livestock GHG Emissions

- Land Use changes
 - Keep land in native vegetation/pasture
 - Cropland retirement
 - Wetland restoration

- Livestock
 - Enteric fermentation
 - Feed management, especially beef and dairy cattle
 - Animal waste storage
 - Dry/Solid manure handling
 - Stacks, dry lots
 - Anaerobic digesters
Reducing Agriculture Sources of Water Pollution

- Fertilizer and Manure Applications
 - Nutrient Management
 - Cover Crops
- Cropping Practices
 - Tillage
 - Crop Rotations
 - Drainage
 - controlled drainage
 - constructed wetlands
- Land Use changes
 - Keep land in native vegetation/pasture
 - Restore wetlands
- Livestock
 - Feed management to control nutrients
 - Animal waste storage
Increasing Carbon Sequestration – Agriculture Soils

- If farmers widely adopt the practices to store carbon, and undertake cost-effective reductions in nitrous oxide and methane, U.S. GHG emissions could be reduced by 5 to 14%.

- Preventing erosion and loss of carbon
 - No-till

- Residue management
 - leave more plant material in the fields for conversion to soil organic matter

- Improved cropping rotations
 - increase the amount of plant material that becomes soil organic matter.

- Winter cover crops
 - add additional residues to the soil and help decrease soil erosion and nitrogen losses

- Land Retirement
 - Conservation Reserve Program (CRP)
 - Conservation buffers (e.g. filter strips, grassed waterways)
Water Quality Benefits of Increasing Soil Carbon

- Increasing the organic matter content of soils
 - improves soil quality
 - Improves soil fertility
 - increases water retention
 - reduces erosion

- Cover Crops
 - Take up excess nitrogen in soils after harvest
Biofuels

• Energy Independence and Security Act (EISA) goals
 • Energy security
 • Lower GHG emissions

• Vast majority of biofuels produced from corn

• Corn production
 • High inputs, especially nitrogen fertilizer
 • Increased soil drainage
 • Increased irrigation

• Cellulosic -- Corn stover
 • Tradeoffs
 • stover adds carbon and nutrients to the soil
 • holds water and soil when no crop growing (most of the year)
USDA Conservation Programs

- Voluntary
- Financial and technical assistance
- Approximately $5 billion a year
- Working lands or land retirement
USDA Conservation Programs
Working Lands

- Environmental Quality Incentives Program (EQIP)
 - Cost-share up to 75% for conservation practices
 - 1-10 year contracts
 - Structural and management practices
 - $1 billion annually

- Conservation Stewardship Program (CSP)
 - New program in 2008 Farm Bill
 - $1 billion

- Cross-Compliance
 - Conservation Compliance on Highly Erodible Land
 - Swampbuster/Sodbuster
USDA Land Retirement Programs

Wetlands Reserve Program (WRP) NRCS
- permanent or 30 year easements
- ~150,000 acres/year
- Raised cap to 3.041 million acres (from 2.275 m acres)

Conservation Reserve Program (CRP)
- 10 to 15 year contracts
- 32 million acre cap
- General sign-up = bids based on national environmental index
- Continuous sign-ups for “highly desirable environmental practices”: filter strips, grassed waterways, riparian buffers, public wellhead areas

Conservation Reserve Enhancement Program (CREP)
- State and federal partnership